Exercise 63

Find the limits as $x \rightarrow \infty$ and as $x \rightarrow-\infty$. Use this information, together with intercepts, to give a rough sketch of the graph as in Example 12.

$$
y=(3-x)(1+x)^{2}(1-x)^{4}
$$

Solution

To find the y-intercept, plug in $x=0$ to the function.

$$
y=(3-0)(1+0)^{2}(1-0)^{4}=3
$$

Therefore, the y-intercept is $(0,3)$. To find the x-intercept(s), set $y=0$ and solve the equation for x.

$$
\begin{gathered}
\quad(3-x)(1+x)^{2}(1-x)^{4}=0 \\
x=3 \quad \text { or } \quad x=-1 \quad \text { or } \quad x=1
\end{gathered}
$$

Therefore, the x-intercepts are $(3,0)$ and $(-1,0)$ and $(1,0)$. Calculate the limit of the function as $x \rightarrow \pm \infty$.

$$
\begin{aligned}
\lim _{x \rightarrow \infty} y & =\lim _{x \rightarrow \infty}(3-x)(1+x)^{2}(1-x)^{4} \\
& =\lim _{x \rightarrow \infty} x\left(\frac{3}{x}-1\right) \cdot x^{2}\left(\frac{1}{x}+1\right)^{2} \cdot x^{4}\left(\frac{1}{x}-1\right)^{4} \\
& =\lim _{x \rightarrow \infty} x^{7}\left(\frac{3}{x}-1\right)\left(\frac{1}{x}+1\right)^{2}\left(\frac{1}{x}-1\right)^{4} \\
& =\lim _{x \rightarrow \infty} \frac{\left(\frac{3}{x}-1\right)\left(\frac{1}{x}+1\right)^{2}\left(\frac{1}{x}-1\right)^{4}}{\frac{1}{x^{7}}} \\
& =\frac{(0-1)(0+1)^{2}(0-1)^{4}}{0} \\
& =-\infty
\end{aligned}
$$

In the second limit, make the substitution, $u=-x$, so that as $x \rightarrow-\infty, u \rightarrow \infty$.

$$
\begin{aligned}
\lim _{x \rightarrow-\infty} y & =\lim _{u \rightarrow \infty}(3+u)(1-u)^{2}(1+u)^{4} \\
& =\lim _{u \rightarrow \infty} u\left(\frac{3}{u}+1\right) \cdot u^{2}\left(\frac{1}{u}-1\right)^{2} \cdot u^{4}\left(\frac{1}{u}+1\right)^{4} \\
& =\lim _{u \rightarrow \infty} u^{7}\left(\frac{3}{u}+1\right)\left(\frac{1}{u}-1\right)^{2}\left(\frac{1}{u}+1\right)^{4} \\
& =\lim _{u \rightarrow \infty} \frac{\left(\frac{3}{u}+1\right)\left(\frac{1}{u}-1\right)^{2}\left(\frac{1}{u}+1\right)^{4}}{\frac{1}{u^{7}}} \\
& =\frac{(0+1)(0-1)^{2}(0+1)^{4}}{0} \\
& =\infty
\end{aligned}
$$

Below is a graph of the function versus x.

